
Type- and Control-Flow Analysis

Matthew Fluet
mtf@cs.rit.edu

Department of Computer Science
Rochester Institute of Technolgy

December 15, 2015
Advances in Programming Languages and Systems (APLS)

Fluet (RIT) T&CFA APLS 1 / 18

Introduction
Control-flow analysis
A compile-time approximation of the “flow” of functions in program:
which functions might be bound to a given variable at run time.

an enabling analysis for the compilation of functional languages
because control flow is not syntactically apparent

typically formulated for dynamically- or simply-typed languages

popular statically-typed functional languages are richly-typed
System F (and extensions) are popular intermediate languages

Seek a control-flow analysis formulated for System F (and extensions).
Exploit well-typedness to obtain more precise control-flow information.

Fluet (RIT) T&CFA APLS 2 / 18

Introduction
Control-flow analysis
A compile-time approximation of the “flow” of functions in program:
which functions might be bound to a given variable at run time.

an enabling analysis for the compilation of functional languages
because control flow is not syntactically apparent

typically formulated for dynamically- or simply-typed languages

popular statically-typed functional languages are richly-typed
System F (and extensions) are popular intermediate languages

Seek a control-flow analysis formulated for System F (and extensions).
Exploit well-typedness to obtain more precise control-flow information.

Fluet (RIT) T&CFA APLS 2 / 18

Example

f1 = λ x1 . · · ·
f2 = λ x2 . · · ·

id = λ x . x

res1 = id f1
res2 = id f2

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 = λ x1 . · · ·
f2 = λ x2 . · · ·

id = λ x . x

res1 = id f1
res2 = id f2

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 = λ x1 . · · ·
f2 = λ x2 . · · ·

id = λ x . x

res1 = id f1
res2 = id f2

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 = λ x1 . · · ·
f2 = λ x2 . · · ·

id = λ x . x

res1 = id f1
res2 = id f2

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 = λ x1 . · · ·
f2 = λ x2 . · · ·

id = λ x . x

res1 = id f1
res2 = id f2

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 = λ x1 . · · ·
f2 = λ x2 . · · ·

id = λ x . x

res1 = id f1
res2 = id f2

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 = λ x1 . · · ·
f2 = λ x2 . · · ·

id = λ x . x

res1 = id f1
res2 = id f2

0CFA
ρ̂(x) { f1 , f2 }

ρ̂(res1) { f1 , f2 }
ρ̂(res2) { f1 , f2 }

0CFA — “classic” monovariant/context-insensitive control-flow analysis
Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 : Int → Int = λ x1 : Int. · · ·
f2 : Bool → Bool = λ x2 : Bool. · · ·

id : ∀α. α → α = Λ α . λ x : α . x

res1 : Int → Int = id [Int → Int] f1
res2 : Bool → Bool = id [Bool → Bool] f2

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 : Int → Int = λ x1 : Int. · · ·
f2 : Bool → Bool = λ x2 : Bool. · · ·

id : ∀α. α → α = Λ α . λ x : α . x

res1 : Int → Int = id [Int → Int] f1
res2 : Bool → Bool = id [Bool → Bool] f2

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 : Int → Int = λ x1 : Int. · · ·
f2 : Bool → Bool = λ x2 : Bool. · · ·

id : ∀α. α → α = Λ α . λ x : α . x

res1 : Int → Int = id [Int → Int] f1
res2 : Bool → Bool = id [Bool → Bool] f2

CFA
ρ̂(xα) { f1Int→Int , f2Bool→Bool }

ρ̂(res1Int→Int) { f1Int→Int , f2Bool→Bool }
ρ̂(res2Bool→Bool) { f1Int→Int , f2Bool→Bool }

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 : Int → Int = λ x1 : Int. · · ·
f2 : Bool → Bool = λ x2 : Bool. · · ·

id : ∀α. α → α = Λ α . λ x : α . x

res1 : Int → Int = id [Int → Int] f1
res2 : Bool → Bool = id [Bool → Bool] f2

CFA then type-filter
ρ̂(xα) { f1Int→Int , f2Bool→Bool }

ρ̂(res1Int→Int) { f1Int→Int }
ρ̂(res2Bool→Bool) { f2Bool→Bool }

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 : Int → Int = λ x1 : Int. · · ·
f2 : Bool → Bool = λ x2 : Bool. · · ·

id : ∀α. α → α = Λ α . λ x : α . x

res1 : Int → Int = id [Int → Int] f1
res2 : Bool → Bool = id [Bool → Bool] f2

CFA then type-filter
ρ̂(xα) { f1Int→Int , f2Bool→Bool }

ρ̂(res1Int→Int) { f1Int→Int }
ρ̂(res2Bool→Bool) { f2Bool→Bool }

Fluet (RIT) T&CFA APLS 3 / 18

Example

f1 : Int → Int = λ x1 : Int. · · ·
f2 : Bool → Bool = λ x2 : Bool. · · ·

id : ∀α. α → α = Λ α . λ x : α . x

res1 : Int → Int = id [Int → Int] f1
res2 : Bool → Bool = id [Bool → Bool] f2

TCFA
ρ̂(xα) { f1Int→Int , f2Bool→Bool }

ρ̂(res1Int→Int) { f1Int→Int }
ρ̂(res2Bool→Bool) { f2Bool→Bool }

φ̂(α) { Int → Int , Bool → Bool }

Fluet (RIT) T&CFA APLS 3 / 18

Example
id:∀α. α → α = Λα. λx:α. x
app:∀β. ∀γ. (β → γ) → β → γ =

Λβ.Λγ.λf:β → γ.λz:β. let g:β → γ = id [β → γ] f in g z

h1:int → int → int = λa1:int.λa2:int. a1+a2
h2:bool → int → int = λb1:bool.λb2:int. if b1 then b2+1 else b2
h3:str → int → int = λc1:str.λc2:int. len(c1)+c2

res1:int → int → int = id [int → int → int] h1
res2:bool → int → int = id [bool → int → int] h2
res3:int → int = app [str] [int → int] h3 "zzz"

Fluet (RIT) T&CFA APLS 4 / 18

Example
id:∀α. α → α = Λα. λx:α. x
app:∀β. ∀γ. (β → γ) → β → γ =

Λβ.Λγ.λf:β → γ.λz:β. let g:β → γ = id [β → γ] f in g z

h1:int → int → int = λa1:int.λa2:int. a1+a2
h2:bool → int → int = λb1:bool.λb2:int. if b1 then b2+1 else b2
h3:str → int → int = λc1:str.λc2:int. len(c1)+c2

res1:int → int → int = id [int → int → int] h1
res2:bool → int → int = id [bool → int → int] h2
res3:int → int = app [str] [int → int] h3 "zzz"

CFA
ρ̂(x) { λa1 , λb1 , λc1 }
ρ̂(f) { λc1 }
ρ̂(g) { λa1 , λb1 , λc1 }

ρ̂(res1) { λa1 , λb1 , λc1 }
ρ̂(res2) { λa1 , λb1 , λc1 }
ρ̂(res3) { λa2 , λb2 , λc2 }

Fluet (RIT) T&CFA APLS 4 / 18

Example
id:∀α. α → α = Λα. λx:α. x
app:∀β. ∀γ. (β → γ) → β → γ =

Λβ.Λγ.λf:β → γ.λz:β. let g:β → γ = id [β → γ] f in g z

h1:int → int → int = λa1:int.λa2:int. a1+a2
h2:bool → int → int = λb1:bool.λb2:int. if b1 then b2+1 else b2
h3:str → int → int = λc1:str.λc2:int. len(c1)+c2

res1:int → int → int = id [int → int → int] h1
res2:bool → int → int = id [bool → int → int] h2
res3:int → int = app [str] [int → int] h3 "zzz"

CFA then type-filter
ρ̂(x) { λa1 , λb1 , λc1 }
ρ̂(f) { λc1 }
ρ̂(g) { λa1 , λb1 , λc1 }

ρ̂(res1) { λa1 , λb1 , λc1 }
ρ̂(res2) { λa1 , λb1 , λc1 }
ρ̂(res3) { λa2 , λb2 , λc2 }

Fluet (RIT) T&CFA APLS 4 / 18

Example
id:∀α. α → α = Λα. λx:α. x
app:∀β. ∀γ. (β → γ) → β → γ =

Λβ.Λγ.λf:β → γ.λz:β. let g:β → γ = id [β → γ] f in g z

h1:int → int → int = λa1:int.λa2:int. a1+a2
h2:bool → int → int = λb1:bool.λb2:int. if b1 then b2+1 else b2
h3:str → int → int = λc1:str.λc2:int. len(c1)+c2

res1:int → int → int = id [int → int → int] h1
res2:bool → int → int = id [bool → int → int] h2
res3:int → int = app [str] [int → int] h3 "zzz"

CFA then type-filter
ρ̂(x) { λa1 , λb1 , λc1 }
ρ̂(f) { λc1 }
ρ̂(g) { λa1 , λb1 , λc1 }

ρ̂(res1) { λa1 }
ρ̂(res2) { λb1 }
ρ̂(res3) { λa2 , λb2 , λc2 }

Fluet (RIT) T&CFA APLS 4 / 18

Example
id:∀α. α → α = Λα. λx:α. x
app:∀β. ∀γ. (β → γ) → β → γ =

Λβ.Λγ.λf:β → γ.λz:β. let g:β → γ = id [β → γ] f in g z

h1:int → int → int = λa1:int.λa2:int. a1+a2
h2:bool → int → int = λb1:bool.λb2:int. if b1 then b2+1 else b2
h3:str → int → int = λc1:str.λc2:int. len(c1)+c2

res1:int → int → int = id [int → int → int] h1
res2:bool → int → int = id [bool → int → int] h2
res3:int → int = app [str] [int → int] h3 "zzz"

(T+C)FA
ρ̂(x) { λa1 , λb1 , λc1 }
ρ̂(f) { λc1 }
ρ̂(g) { λa1 , λb1 , λc1 }

ρ̂(res1) { λa1 , λb1 , λc1 }
ρ̂(res2) { λa1 , λb1 , λc1 }
ρ̂(res3) { λa2 , λb2 , λc2 }

φ̂(α) { int→int→int , bool→int→int , β→γ }
φ̂(β) { str }
φ̂(γ) { int→int }

Fluet (RIT) T&CFA APLS 4 / 18

Example
id:∀α. α → α = Λα. λx:α. x
app:∀β. ∀γ. (β → γ) → β → γ =

Λβ.Λγ.λf:β → γ.λz:β. let g:β → γ = id [β → γ] f in g z

h1:int → int → int = λa1:int.λa2:int. a1+a2
h2:bool → int → int = λb1:bool.λb2:int. if b1 then b2+1 else b2
h3:str → int → int = λc1:str.λc2:int. len(c1)+c2

res1:int → int → int = id [int → int → int] h1
res2:bool → int → int = id [bool → int → int] h2
res3:int → int = app [str] [int → int] h3 "zzz"

(T+C)FA then type-filter
ρ̂(x) { λa1 , λb1 , λc1 }
ρ̂(f) { λc1 }
ρ̂(g) { λa1 , λb1 , λc1 }

ρ̂(res1) { λa1 , λb1 , λc1 }
ρ̂(res2) { λa1 , λb1 , λc1 }
ρ̂(res3) { λa2 , λb2 , λc2 }

φ̂(α) { int→int→int , bool→int→int , β→γ }
φ̂(β) { str }
φ̂(γ) { int→int }

Fluet (RIT) T&CFA APLS 4 / 18

Example
id:∀α. α → α = Λα. λx:α. x
app:∀β. ∀γ. (β → γ) → β → γ =

Λβ.Λγ.λf:β → γ.λz:β. let g:β → γ = id [β → γ] f in g z

h1:int → int → int = λa1:int.λa2:int. a1+a2
h2:bool → int → int = λb1:bool.λb2:int. if b1 then b2+1 else b2
h3:str → int → int = λc1:str.λc2:int. len(c1)+c2

res1:int → int → int = id [int → int → int] h1
res2:bool → int → int = id [bool → int → int] h2
res3:int → int = app [str] [int → int] h3 "zzz"

(T+C)FA then type-filter
ρ̂(x) { λa1 , λb1 , λc1 }
ρ̂(f) { λc1 }
ρ̂(g) { λc1 }

ρ̂(res1) { λa1 }
ρ̂(res2) { λb1 }
ρ̂(res3) { λa2 , λb2 , λc2 }

φ̂(α) { int→int→int , bool→int→int , β→γ }
φ̂(β) { str }
φ̂(γ) { int→int }

Fluet (RIT) T&CFA APLS 4 / 18

Example
id:∀α. α → α = Λα. λx:α. x
app:∀β. ∀γ. (β → γ) → β → γ =

Λβ.Λγ.λf:β → γ.λz:β. let g:β → γ = id [β → γ] f in g z

h1:int → int → int = λa1:int.λa2:int. a1+a2
h2:bool → int → int = λb1:bool.λb2:int. if b1 then b2+1 else b2
h3:str → int → int = λc1:str.λc2:int. len(c1)+c2

res1:int → int → int = id [int → int → int] h1
res2:bool → int → int = id [bool → int → int] h2
res3:int → int = app [str] [int → int] h3 "zzz"

(T&C)FA
ρ̂(x) { λa1 , λb1 , λc1 }
ρ̂(f) { λc1 }
ρ̂(g) { λc1 }

ρ̂(res1) { λa1 }
ρ̂(res2) { λb1 }
ρ̂(res3) { λa2 , λb2 , λc2 }

φ̂(α) { int→int→int , bool→int→int , β→γ }
φ̂(β) { str }
φ̂(γ) { int→int }

Fluet (RIT) T&CFA APLS 4 / 18

Example
id:∀α. α → α = Λα. λx:α. x
app:∀β. ∀γ. (β → γ) → β → γ =

Λβ.Λγ.λf:β → γ.λz:β. let g:β → γ = id [β → γ] f in g z

h1:int → int → int = λa1:int.λa2:int. a1+a2
h2:bool → int → int = λb1:bool.λb2:int. if b1 then b2+1 else b2
h3:str → int → int = λc1:str.λc2:int. len(c1)+c2

res1:int → int → int = id [int → int → int] h1
res2:bool → int → int = id [bool → int → int] h2
res3:int → int = app [str] [int → int] h3 "zzz"

(T&C)FA
ρ̂(x) { λa1 , λb1 , λc1 }
ρ̂(f) { λc1 }
ρ̂(g) { λc1 }

ρ̂(res1) { λa1 }
ρ̂(res2) { λb1 }
ρ̂(res3) { λc2 }

φ̂(α) { int→int→int , bool→int→int , β→γ }
φ̂(β) { str }
φ̂(γ) { int→int }

Fluet (RIT) T&CFA APLS 4 / 18

Introduction

A type- and control-flow analysis for System F

Type-flow analysis
A compile-time approximation of the “flow” of types in program:
which types might be bound to a given type variable at run time

⇑ determines type abstractions
flowing to type applications ⇓ rejects flows incompatible

with static typing

Control-flow analysis
A compile-time approximation of the “flow” of functions in program:
which functions might be bound to a given variable at run time

Fluet (RIT) T&CFA APLS 5 / 18

Introduction

A type- and control-flow analysis for System F

Types improve the precision of the control-flow analysis;
improve the effectiveness of optimizations based on the analysis.

inlining, copy propagation, dead-code elimination, . . .

Type-flow analysis enables novel optimizations.
polymorphic functions used at a finite number of types
can be optimized to monomorphic instances
optimization of intensional polymorphism (i.e., typecase α of · · ·)

Fluet (RIT) T&CFA APLS 6 / 18

Overview

Specification-Based Formulation of TCFA (IFL’12)
A collection of declarative constraints that a valid analysis result must satisfy;

given a proposed analysis result, verify that it satisfies the constraints.

Soundness, Existence, Decidability, Computability, Complexity

Flow-Graph-Based Formulation of TCFA (IFL’14)
A graph with edges corresponding to flow of abstract values;

analysis result determined by graph reachability.

Soundness, Algorithm, Complexity

Related and Future Work

Fluet (RIT) T&CFA APLS 7 / 18

Specification-based Formulation: Acceptability

φ̂; ρ̂ �S e “φ̂ and ρ̂ are acceptable for e”

φ̂ and ρ̂ approximate every run-time type and value environment
that arises during evaluation

Abstract type environments map type variables to sets of (syntactic) types.
Abstract value environments map variables to sets of (syntactic) values.

ATEnv = TyVar → P(Type) 3 φ̂ ::= { α 7→ {τ, . . .}, . . . }
AVEnv = Var → P(Val) 3 ρ̂ ::= { x 7→ {v , . . .}, . . . }

Fluet (RIT) T&CFA APLS 8 / 18

Specification-based Formulation: Acceptability

φ̂; ρ̂ �S e “φ̂ and ρ̂ are an acceptable type- and control-flow analysis for e”

Fluet (RIT) T&CFA APLS 9 / 18

Specification-based Formulation: Acceptability

φ̂; ρ̂ �S e “φ̂ and ρ̂ are an acceptable type- and control-flow analysis for e”

φ̂; ρ̂ �S x

λz:τz .eb ∈ ρ̂(x) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e
φ̂; ρ̂ �S let x:τx = λz:τz .eb in e

Λβ.eb ∈ ρ̂(x) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e
φ̂; ρ̂ �S let x:τx = Λβ.eb in e∧

λz:τz .eb∈ρ̂(xf)

(∀va ∈ ρ̂(xa) . va ∈ ρ̂(z) ∧
∀vb ∈ ρ̂(ResOf(eb)) . vb ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:τx = xf xa in e∧
Λβ.eb∈ρ̂(xf)

(
τa ∈ φ̂(β) ∧
∀vb ∈ ρ̂(ResOf(eb)) . vb ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:τx = xf [τa] in e

Fluet (RIT) T&CFA APLS 9 / 18

Specification-based Formulation: Acceptability

φ̂; ρ̂ �S e “φ̂ and ρ̂ are an acceptable type- and control-flow analysis for e”

φ̂; ρ̂ �S x

λz:τz .eb ∈ ρ̂(x) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e
φ̂; ρ̂ �S let x:τx = λz:τz .eb in e

Λβ.eb ∈ ρ̂(x) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e
φ̂; ρ̂ �S let x:τx = Λβ.eb in e∧

λz:τz .eb∈ρ̂(xf)

(∀va ∈ ρ̂(xa) . va ∈ ρ̂(z) ∧
∀vb ∈ ρ̂(ResOf(eb)) . vb ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:τx = xf xa in e∧
Λβ.eb∈ρ̂(xf)

(
τa ∈ φ̂(β) ∧
∀vb ∈ ρ̂(ResOf(eb)) . vb ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:τx = xf [τa] in e

Fluet (RIT) T&CFA APLS 9 / 18

Specification-based Formulation: Acceptability

φ̂; ρ̂ �S e “φ̂ and ρ̂ are an acceptable type- and control-flow analysis for e”

φ̂; ρ̂ �S x

λz:τz .eb ∈ ρ̂(x) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e
φ̂; ρ̂ �S let x:τx = λz:τz .eb in e

Λβ.eb ∈ ρ̂(x) φ̂; ρ̂ �S eb φ̂; ρ̂ �S e
φ̂; ρ̂ �S let x:τx = Λβ.eb in e∧

λz:τz .eb∈ρ̂(xf)

(
∀va ∈ ρ̂(xa) . φ̂ �S TyOf(va) ∼∼∼ τz ⇒ va ∈ ρ̂(z) ∧
∀vb ∈ ρ̂(ResOf(eb)) . φ̂ �S TyOf(vb) ∼∼∼ τx ⇒ vb ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:τx = xf xa in e∧
Λβ.eb∈ρ̂(xf)

(
τa ∈ φ̂(β) ∧
∀vb ∈ ρ̂(ResOf(eb)) . φ̂ �S TyOf(vb) ∼∼∼ τx ⇒ vb ∈ ρ̂(x)

)
φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:τx = xf [τa] in e

Fluet (RIT) T&CFA APLS 9 / 18

Specification-based Formulation: Type Compatibility

φ̂ �S τ1 ∼∼∼ τ2 “τ1 and τ2 are compatible under φ̂”

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 = θ2

φ̂ �S τ1 ∼∼∼ τ2

Fluet (RIT) T&CFA APLS 10 / 18

Specification-based Formulation: Type Compatibility

φ̂ �S τ1 ∼∼∼ τ2 “τ1 and τ2 are compatible under φ̂”

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 = θ2

φ̂ �S τ1 ∼∼∼ τ2

Fluet (RIT) T&CFA APLS 10 / 18

Specification-based Formulation: Type Compatibility

φ̂ �S τ1 ∼∼∼ τ2 “τ1 and τ2 are compatible under φ̂”

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 = θ2

φ̂ �S τ1 ∼∼∼ τ2

τ1 and τ2 “expand” to a common closed type;
θ1 = θ2 is syntactic equality

Fluet (RIT) T&CFA APLS 10 / 18

Specification-based Formulation: Type Compatibility

φ̂ �S τ1 ∼∼∼ τ2 “τ1 and τ2 are compatible under φ̂”

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 = θ2

φ̂ �S τ1 ∼∼∼ τ2

Is φ̂ �S τ1 ∼∼∼ τ2 decidable?

“Recursion” in abstract type environment foils exhaustive enumeration;
may be infinitely many θ such that φ̂ �S τ ⇒⇒ θ.

Fluet (RIT) T&CFA APLS 10 / 18

Specification-based Formulation: Type Compatibility

φ̂ �S τ1 ∼∼∼ τ2 “τ1 and τ2 are compatible under φ̂”

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 = θ2

φ̂ �S τ1 ∼∼∼ τ2

φ̂ �S τ1 ∼∼∼ τ2 is decidable!

Interpret φ̂ as (productions for) a regular-tree grammar;
a derivation of φ̂ �S α ⇒⇒ θ is a parse tree.

Regular-tree grammars are closed under intersection
and emptiness of regular-tree grammars is decidable.

Fluet (RIT) T&CFA APLS 10 / 18

Specification-based Formulation: Type Compatibility

φ̂ �S τ1 ∼∼∼ τ2 “τ1 and τ2 are compatible under φ̂”

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 = θ2

φ̂ �S τ1 ∼∼∼ τ2

φ̂ �S τ1 ∼∼∼ τ2 is decidable!

Interpret φ̂ as (productions for) a regular-tree grammar;
a derivation of φ̂ �S α ⇒⇒ θ is a parse tree.

Regular-tree grammars are closed under intersection
and emptiness of regular-tree grammars is decidable.

Least ρ̂ and φ̂ such that φ̂; ρ̂ �S e computable by lfp iteration.

Fluet (RIT) T&CFA APLS 10 / 18

Considering Complexity

Is the type- and control-flow analysis efficiently computable?

Specification-Based
(naïve lfp iteration)

Flow-Graph-Based
(work-queue iteration)

“classic” CFA O(n5)

O(n3)

TCFA

O(n13)
O(n10) amortized

O(n4)

O(l3 + l2m2 + m4)

O(l3 + m4) amortized

l : the size of variables, values, and calls
m: the size of type variables and types

Fluet (RIT) T&CFA APLS 11 / 18

Considering Complexity

Is the type- and control-flow analysis efficiently computable?

Specification-Based
(naïve lfp iteration)

Flow-Graph-Based
(work-queue iteration)

“classic” CFA O(n5)

O(n3)

TCFA

O(n13)
O(n10) amortized

O(n4)

O(l3 + l2m2 + m4)

O(l3 + m4) amortized

l : the size of variables, values, and calls
m: the size of type variables and types

Fluet (RIT) T&CFA APLS 11 / 18

Considering Complexity

Is the type- and control-flow analysis efficiently computable?

Specification-Based
(naïve lfp iteration)

Flow-Graph-Based
(work-queue iteration)

“classic” CFA O(n5)

O(n3)

TCFA O(n13)

O(n10) amortized

O(n4)

O(l3 + l2m2 + m4)

O(l3 + m4) amortized

l : the size of variables, values, and calls
m: the size of type variables and types

Fluet (RIT) T&CFA APLS 11 / 18

Considering Complexity

Is the type- and control-flow analysis efficiently computable?

Specification-Based
(naïve lfp iteration)

Flow-Graph-Based
(work-queue iteration)

“classic” CFA O(n5)

O(n3)

TCFA O(n13)
O(n10) amortized

O(n4)

O(l3 + l2m2 + m4)

O(l3 + m4) amortized

l : the size of variables, values, and calls
m: the size of type variables and types

Fluet (RIT) T&CFA APLS 11 / 18

Considering Complexity

Is the type- and control-flow analysis efficiently computable?

Specification-Based
(naïve lfp iteration)

Flow-Graph-Based
(work-queue iteration)

“classic” CFA O(n5) O(n3)

TCFA O(n13)
O(n10) amortized

O(n4)

O(l3 + l2m2 + m4)

O(l3 + m4) amortized

l : the size of variables, values, and calls
m: the size of type variables and types

Fluet (RIT) T&CFA APLS 11 / 18

Considering Complexity

Is the type- and control-flow analysis efficiently computable?

Specification-Based
(naïve lfp iteration)

Flow-Graph-Based
(work-queue iteration)

“classic” CFA O(n5) O(n3)

TCFA O(n13)
O(n10) amortized

O(n4)

O(l3 + l2m2 + m4)

O(l3 + m4) amortized

l : the size of variables, values, and calls
m: the size of type variables and types

Fluet (RIT) T&CFA APLS 11 / 18

Considering Complexity

Is the type- and control-flow analysis efficiently computable?

Specification-Based
(naïve lfp iteration)

Flow-Graph-Based
(work-queue iteration)

“classic” CFA O(n5) O(n3)

TCFA O(n13)
O(n10) amortized

O(n4)

O(l3 + l2m2 + m4)

O(l3 + m4) amortized

l : the size of variables, values, and calls
m: the size of type variables and types

Fluet (RIT) T&CFA APLS 11 / 18

Considering Complexity

Is the type- and control-flow analysis efficiently computable?

Specification-Based
(naïve lfp iteration)

Flow-Graph-Based
(work-queue iteration)

“classic” CFA O(n5) O(n3)

TCFA O(n13)
O(n10) amortized

O(n4)

O(l3 + l2m2 + m4)

O(l3 + m4) amortized

l : the size of variables, values, and calls
m: the size of type variables and types

Fluet (RIT) T&CFA APLS 11 / 18

Considering Complexity

O(l3 + m4)

Expect size of programs of size n to be
dominated by size l of variables, values, and calls,
not by size m of type variables and types

A program may have many defs and uses of int → int funs,
all sharing the same (top-level) type def

Not bad in theory; much better in practice
Worst-case analysis assumes every value flows to every variable
and every type flows to every type variable

But, CFA (and TCFA?) is useful and used in compilers
CFA finds many variables with small numbers (often 1) of values
TCFA finds many type variables with small numbers (often 1) of types
Algorithm only explores concl of found flows

Fluet (RIT) T&CFA APLS 12 / 18

Considering Complexity

O(l3 + m4)

Expect size of programs of size n to be
dominated by size l of variables, values, and calls,
not by size m of type variables and types

A program may have many defs and uses of int → int funs,
all sharing the same (top-level) type def

Not bad in theory; much better in practice
Worst-case analysis assumes every value flows to every variable
and every type flows to every type variable

But, CFA (and TCFA?) is useful and used in compilers
CFA finds many variables with small numbers (often 1) of values
TCFA finds many type variables with small numbers (often 1) of types
Algorithm only explores concl of found flows

Fluet (RIT) T&CFA APLS 12 / 18

Considering Complexity

O(l3 + m4)

Expect size of programs of size n to be
dominated by size l of variables, values, and calls,
not by size m of type variables and types

A program may have many defs and uses of int → int funs,
all sharing the same (top-level) type def

Not bad in theory; much better in practice

Worst-case analysis assumes every value flows to every variable
and every type flows to every type variable

But, CFA (and TCFA?) is useful and used in compilers
CFA finds many variables with small numbers (often 1) of values
TCFA finds many type variables with small numbers (often 1) of types
Algorithm only explores concl of found flows

Fluet (RIT) T&CFA APLS 12 / 18

Considering Complexity

O(l3 + m4)

Expect size of programs of size n to be
dominated by size l of variables, values, and calls,
not by size m of type variables and types

A program may have many defs and uses of int → int funs,
all sharing the same (top-level) type def

Not bad in theory; much better in practice
Worst-case analysis assumes every value flows to every variable
and every type flows to every type variable

But, CFA (and TCFA?) is useful and used in compilers
CFA finds many variables with small numbers (often 1) of values
TCFA finds many type variables with small numbers (often 1) of types
Algorithm only explores concl of found flows

Fluet (RIT) T&CFA APLS 12 / 18

Related Work (and Lack Thereof)

Need to distinguish between
flow analyses expressed as sophisticated type systems (many)
flow analyses of languages with sophisticated type systems (few)

Fluet (RIT) T&CFA APLS 13 / 18

Related Work (and Lack Thereof)

Need to distinguish between
flow analyses expressed as sophisticated type systems (many)
flow analyses of languages with sophisticated type systems (few)

For simply-typed λ-calculus, 0CFA not improved by type filtering
For rank-1 polymorphism (i.e., “let”-polymorphism), either use

monomorphisation (explicitly eliminate polymorphism before analysis)
Flow-directed Closure Conversion [Cejtin, Jagannathan, & Weeks (ESOP’00)]
polyvariance (implicitly eliminate polymorphism during analysis)
Set-based Program Analysis of ML Programs [Heintze (LFP’94)]

For full System F, assume type-based analyses are “good enough”

Fluet (RIT) T&CFA APLS 13 / 18

Related Work (and Lack Thereof)

Need to distinguish between
flow analyses expressed as sophisticated type systems (many)
flow analyses of languages with sophisticated type systems (few)

Type-Directed Flow Analysis for Typed Intermediate Languages;
Jagannathan, Weeks, & Wright (SAS’97)

limited to predicative System F with recursion
polyvariant analysis
diverges on programs using polymorphic recursion

Type-sensitive Control-Flow Analysis;
Reppy (ML’06)

Suggests mapping polymorphism to >

Fluet (RIT) T&CFA APLS 13 / 18

Future Work

Improve precision of type- and control-flow analysis

Extend type- and control-flow to System Fω

Applications of type- and control-flow analysis

Fluet (RIT) T&CFA APLS 14 / 18

Future Work

Improve precision of type- and control-flow analysis:

Adapt well-known improvements to control-flow analyses:
polyvariant/context-sensitive analysis
reachability/demand-driven analysis
abstract reachability & abstract cardinality
. . .

Fluet (RIT) T&CFA APLS 15 / 18

Future Work

Improve precision of type- and control-flow analysis:

Explore improvements motivated by well-typedness:

∧
λz:τz .eb∈ρ̂(xf)

∀va ∈ ρ̂(xa) . φ̂ �S TyOf(v) ∼∼∼ τz ⇒ va ∈ ρ̂(z) ∧(
∃va ∈ ρ̂(xa) . φ̂ �S TyOf(v) ∼∼∼ τz ⇒
∀vb ∈ ρ̂(ResOf(eb)) . φ̂ �S TyOf(v) ∼∼∼ τx ⇒ vb ∈ ρ̂(x)

) φ̂; ρ̂ �S e

φ̂; ρ̂ �S let x:αx = xf xa in e

if no actual arguments flow to formal argument,
then function could not be called (and no flow of function result)

Fluet (RIT) T&CFA APLS 15 / 18

Future Work

Improve precision of type- and control-flow analysis:

Explore improvements motivated by well-typedness:

rec loop = Λα. λx:α. loop [α × α] (x,x)
loop [Int] 1

φ̂(α) = { Int , α × α } φ̂ �S α ⇒⇒ (Int × Int) × Int

but all dynamic instantiations of α are “perfect binary trees”
interpret (portions of) abstract type environment as an L-system?

Fluet (RIT) T&CFA APLS 15 / 18

Future Work

Extend type- and control-flow analysis to System Fω:

Kind 3 κ ::= ? | κ ⇒ κ Type 3 τ ::= τ → τ | α | ∀α:κ. τ | λα:κ. τ | τ τ

flow soundness with modified type-compatibility judgement:

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 ≡βη θ2

φ̂ �S τ1 ∼∼∼ τ2

Fluet (RIT) T&CFA APLS 16 / 18

Future Work

Extend type- and control-flow analysis to System Fω:

Kind 3 κ ::= ? | κ ⇒ κ Type 3 τ ::= τ → τ | α | ∀α:κ. τ | λα:κ. τ | τ τ

flow soundness with modified type-compatibility judgement:

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 ≡βη θ2

φ̂ �S τ1 ∼∼∼ τ2

is type compatibility decidable?

Fluet (RIT) T&CFA APLS 16 / 18

Future Work

Extend type- and control-flow analysis to System Fω:

Kind 3 κ ::= ? | κ ⇒ κ Type 3 τ ::= τ → τ | α | ∀α:κ. τ | λα:κ. τ | τ τ

flow soundness with modified type-compatibility judgement:

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 ≡βη θ2

φ̂ �S τ1 ∼∼∼ τ2

is type compatibility decidable?
θ1 ≡βη θ2 is decidable for well-kinded types (by normalization)
regular-tree grammar intersection/emptiness not directly applicable

Fluet (RIT) T&CFA APLS 16 / 18

Future Work

Extend type- and control-flow analysis to System Fω:

Kind 3 κ ::= ? | κ ⇒ κ Type 3 τ ::= τ → τ | α | ∀α:κ. τ | λα:κ. τ | τ τ

flow soundness with modified type-compatibility judgement:

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 ≡βη θ2

φ̂ �S τ1 ∼∼∼ τ2

is type compatibility decidable?
run a control-flow analysis over types to approximate applications;
reduce to regular-tree grammar intersection/emptiness,
with a loss of precision and completeness (wrt. type-compatibility judgement)

Fluet (RIT) T&CFA APLS 16 / 18

Future Work

Extend type- and control-flow analysis to System Fω:

Kind 3 κ ::= ? | κ ⇒ κ Type 3 τ ::= τ → τ | α | ∀α:κ. τ | λα:κ. τ | τ τ

flow soundness with modified type-compatibility judgement:

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 ≡βη θ2

φ̂ �S τ1 ∼∼∼ τ2

is type compatibility decidable?
algorithm for regular-tree grammar intersection somewhat similar to
type equivalence with type definitions by weak-head normalization;
combine the two algorithms in a decision procedure?

Fluet (RIT) T&CFA APLS 16 / 18

Future Work

Extend type- and control-flow analysis to System Fω:

Kind 3 κ ::= ? | κ ⇒ κ Type 3 τ ::= τ → τ | α | ∀α:κ. τ | λα:κ. τ | τ τ

flow soundness with modified type-compatibility judgement:

φ̂ �S τ1 ⇒⇒ θ1 φ̂ �S τ2 ⇒⇒ θ2 θ1 ≡βη θ2

φ̂ �S τ1 ∼∼∼ τ2

is type compatibility decidable?
canonizing substitution is alternative approach to type equivalence,
maintaining types in a canonical β-normal/η-long form;
exploit this added structure in a decision procedure?

Fluet (RIT) T&CFA APLS 16 / 18

Future Work

Applications of type- and control-flow analysis:

Flow Directed Defunctionalization of System F
compile higher-order polymorphic source language
to first-order polymorphic target language
type- and control-flow analysis to minimize dispatches

Flow-directed Closure Conversion [Cejtin, Jagannathan, & Weeks (ESOP’00)]
Polymorphic Typed Defunctionalization [Pottier & Gauthier (POPL’04)]
Defunctionalizing Polymorphic Types [Midtgaard (PhD Dissertation’07)]

Fluet (RIT) T&CFA APLS 17 / 18

Type- and Control-Flow Analysis for System F

Exploit types to obtain more precise control-flow information.
Type-flow and control-flow are mutually beneficial.
Sound analysis via specification-based formulation.
Computable analysis via interpretation as regular-tree grammar.
Efficient algorithm via flow-graph-based formulation.
Many directions for future work.

Questions?
Fluet (RIT) T&CFA APLS 18 / 18

